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INVESTIGATION OF THE PROCESS OF SIMPLE WAVE INVERSION
IN AN ANISOTROPIC PLASMA

M. S. Ruderman

Introduction /3*

Many problems -in space and laboratory physics lead to the necessity of

investigating movements of plasma for which the characteristic parameter vari=

ation length is small in comparison to the mean free path of the charged particles

but large in comparison to the Larmor radius.

Chew, Goldberg and Low [1] have shown that in this case the behavior of the

plasma can be described by a system of magnetohydrodynamic equations using aniso-

tropic pressure.

On the basis of these equations a study was made in [2] of simple waves,

the example being taken of nonlinear waves and it being assumed that the longi-

tudinal and transverse pressures (p and p ) are small in comparison to magnetic
2

pressure B /8T, in which B is the vector of magnetic field induction, and in [3]

'investigation is made of simple waves with no restrictions imposed on the hydro-

dynamic parameters.

The process of inversion of simple waves in the Chew, Goldberg;, and Low

(CGL) approximation is investigated in the present paper.

§1. Simple Waves in an Anisotropic Plasma /4

The system of magnetohydrodynamic equations in the CGL approximation is of'

the form (see, for example, [1]):
4--

*Numbers in the margin indicate pagination in the foreign text.



rzo 8 x'B;

longitudinal pressures, P equals the pressure tensor, B is the magnetic field

induction vector, and B = B/B is the unit vector along the magnetic field.

Simple wave r Riemann wave is the term applied to a one-dimensional flow

of gas in which all the hydrodynamic~iparameters depend on #(x, t), in which t
is time and x is the space coordinate.

is an arbitrary function. We will assume that - p. We introduce the
phase velocity of wave motion relative to the gas in accordance with the formula

A 8u1 = (1.2)
in which & is the phase velocity of wave motion and u is the velocity of gas

motion along the x axis. It has been shown in [3] that 2 may assume 4 values,

of which we will consider only 2, those corresponding to rapid and slow Riemann

waves. We designate these values as a2 and a22 respectively.
+

There is derived in [3] a system of equations ascribing the variation in

parameters as a function of p, in rapid and slow simple waves:

2

,dp c

-2



Here Bx, By are the components of the magnetic field strength vector along the

x and y axes, and v:is the velocity of gas motion along the y axis. We addi-

tionally introduce the notation

1 = ; B= +3 ; P=p + 4r- (1.4)

A,_ ._-(- c) p,-3p; p,-(4p,,

A qualitative study is made in [3] of the field of integral curves for
2rfpid and slow waves in the p, B plane. The field of integral curves for rapid

waves is illustrated in Figure 1, and that for slow waves in Figure 2.

In both figures curve 1 is defined by the equation

to the right of curve 1 there is a region of serpentine instability defined by

statement of a quality pll > pm. The values of p* and p** are determined by

the equation

4. 4* (1.6)

2
Superscripts (*) and (**) denote that the values are taken at B = 0 and p = p* /6

y
and p = p** respectively.

For slow simple waves along an integral curve emerging from_ the p axis to_

the left of p**, aB 2 /ap < 0 everywhere. If the integral curve emerges from
Y 2

the p axis to the right of p**, then initially aB /ap > 0, this derivative subse-
2 <Y

,1 ,quently becoming infinite, after which aB /ap < 0.
y

§2. Derivation of Equations for Inversion Time and Path

It is convenient for purposes of subsequent discussion to introduce the

Idimensionless variables:
S=.8p,,l , .- ,pp = (.p, _b)/p,,,

-pp , --p/3 a, 0U =(Po/8lo) (2.1);

here po is the characteristic density, L the characteristic dimension, and Bo
the magnetic induction at.p = po

3



Making use of (2.1) we reduce equations (1.3) and relations (1.4) to

dimensionless form. As the result we obtain:

dI/e) _2 -A+
dp' -f' C' (P' P' (2.2)

In order to find ( olve the equation

+ . (2.3)

,I 3T - ) (I2.4A

first time.

* fl)3 + A e i J

Let t 2 P.

3( t=(2 - e) (.3 e6) 6

with f/ < 0 henceforth omit the primes accompanying the dimensionless values. /7tics

In order to find p( the, it is necessary to solve the equation

Z)~

in which
a~ du . a9

Hence for p we have the equation:

al C (2.4)

___quation of characteristics and the characteristic relation for equation
(2.5) are of-the form - -

A = a,,,- + U Ja Const (2.5)

from which it follows that the characteristics are straight lines. Inversion

occurs at the time when 2 infinitely close characteristics intersect for the

first time.

Let

04 t-4 0(2.6)

with af/at4 < 0 when 0 < k < 1, f(l) = 1. In plane T, ~ the.characteristics

,emerging from the t axis to the right of 1 and to the left of 0 will be parallel.

4



Only the characteristics emerging from segment [0, 1] can change in slope. In

particular, if cX/ap > 0, the angle between the characteristics and the axis

will decrease with movement from 0 to 1.

Let 0 < t < 1. Let us consider the characteristics emerging from points

o and o + A. The equations for them are written in the form

in which A = a + u. By finding the point of intersection of these 2 lines and /8

passing to the limit at t - 0, we learn that infinitely close characteristics

intersect at the point 7;

Then the inversion time is defined by the formula

Tinv =P.= L J (2.7)

If the inversion path is defined as the distance covered by the base of the

profile of (2.6) in 'r. with u(l) = 0 (i.e., over a stationary medium), the
inv

inversion path is then recorded in the form

inv. = T. cinv (1). (2.8)

§3. Determination of Inversion Path in Certain Extreme Cases for Rapid Waves

These statements of inequality denote that pll and pL are much smaller than the

magnetic pressure.

Equations (2.2) assume the form

0(Fi ) 2 du. _ . (L,9  .I 11
dp ep E (3.1),

_ . AP ... . . l i 3 -.

From the first equation we obtain = p-2. It is then easy to find that
0

5



By use of this result we obtain the following expression for the inversion path' /9

in k t (3.2)

Let

= - I2 _ 1 0 (3.3)

(The graph of this function is shown in Figure 3.) inv = 1/3 a, the profile

being inverted at the base, that is, when I = i.

2. 1 << 1. Equations (2.2) assume the form:

d(I/~) _2 : du- a.+

,i . 2. __ - (3.4)

with - - - I" -- +

-2
From the first equation of system (3.4) we obtain Z = p , after which it is

easy to find the following expression for the inversion path:

2 iny s o 1 . d(3.5)
inv Fm ., I _.

S Adopting f ) in the form of (3..3) we obtain . = 1/3 a.

§4. Determination of Inversion Path in Certain Extreme Cases for Slow Waves

Equations (2.2) assume the form (see [3]):

We obtain the following expression for 2

Integrating system (3.6) we obtain /_10.

6(3.

J37

L ------~- ----- T



It can be readily seen that p is a monotonically decreasing function of 1/L.

Then 1/1 is in its turn a monotonically decreasing function of p. We introduce

the notation .

It is then easy to obtain the following equations

! g- : ' P ;F(P) d p .J F ,
-~ _-_ : _ (3.8)

dp -(F(P) - -.P

The last term in (3.8) may be disregarded because B is so small, and we then

obtain

inv 2 o 1i 0F (39(3.9)

Let us take j) in the form of (3.3). By introducing the notation Z = 1 - ,

we obtain the following formula for the inversion path

v'e Z - " (3.9')
inv -40. V i - L

The following equation can easily be obbtained by use of (3.6):

dZ F(d Zs +1)]1

The first term in the braces may be disregarded because B is so small, provided

only that a is not too large. Then F(aZ + 1)/(1 - Z) is a monotonically

increasing function and the minimum in (3.9') is reached when Z = 0. Thus we /1

obtain for the inversion path

nv = I/ . . (3.10)

2. L << 1. Equations (2.2) assume the form

dP +2e P e(di- ) 'p (3.11)

2
We have the following expression for a2

2'# 1.eiiA P

7



By integrating (3.11) we obtain

+ 4 + (3.12)

1/2It can readily be seen that (1 /)12 decreases monotonically with p increasing

from 1 to + and (1G/1)1 0 when p .

For the purposes of the following discussion we shall assume that o >> 1,

r (1 - Apo/p >> 1. Then we obtain the following equations from (3.11) and

(3.12):

e.=__ o( - (3.13)

dp P  i- poRPJ (3.14)

.. = g- v .Po (3.15)

It follows from (3.15) that a2 > 0 when Ap-/p > -5. We shall henceforth assume
0 0

this condition to have been fulfilled.

Let us take fd) in the form of (3.3). We then obtain the following ex-

pression for the inversion path:

_ -1 . u2 , (3.16) /12

in which

'f(p)=

We easily obtain

(+" P) _-P. P .- ..) . (3.17)

in which

I, = 4 . (+ 0- )+ )p(-)+(+' 1).

function l(p) is a quadratic trinomial relative to (1 - Apo/P ). Let us cal-

culate its discriminant D(p). We have

lP) = -- i f69p -3OOp(i 4) + i28(i+d)). (3.18)

8



D(p) < 0 when 0.707(1 + a) < p < 1.06(1 + a). If a < 0.414, then 0.707 (1 + a) <

< 1. In this case ap/ap > 0 on segment [1, 1 + a]. Then p(p) assumes the

minimum value when p = 1. Thus for the inversion path we obtain

5iv = p*-Pz when d o,'1 (3.19)

When Ap /p = -3, a = 0.3, we have inv = 0.185, i.e., the wave is inverted

after approximately one-fifth of its length L has passed.

It must be noted that when Bo >> 1 the condition of occurrence of serpentine

instability is written in the form B > B(l - Ap/p) or Ap/p > 0. But it follows;

from (3.11) that -

Thus we find that on change in p from 1 to 1 + a the condition of absence of

serpentine instability is expressed by the statement of inequality

(j.#.j)S + i 1(3.20)

This condition will be used subsequently in discussion of the numerical results.

§5. Determination of the Inversion Path by a Numerical Method /13

In the general case it is not possible to investigate expression (2.7)

analytically and determine the inversion path. Hence a numerical method is

utilized.

Equation (2.2) is integrated and formula

La+c( . (4.1)

derived in [3] is used for numerical determination of the inversion path.

Coefficients al, a2, a3 are given in [3] and are not reproduced here because of

being too unwieldy. Einv is determined by means of formulas (2.7) and (2.8).

f(t) was in this case selected in the form of (3.3) (see Figure 3).

inv as a function of 1/0 'has been calculated for rapid waves, it being

assumed that a = 1. Five cases have been considered:

0, 04. ; a/P. = i curve

i 0,4 ; /p.=O curve 2;

1Pi ;- Ncurve 3;
.P- = 4 •lpJp = 0 ;1_ curve 4;

j=o,o-57;:AJ o=: -9 ; curve -5.

9



1/1 in this case ranges from 1 to 11. The results of the calculation are pre-
o

sented in Figure 4. It is to be noted that the 2nd, 4th and 5th cases are

characterized by the fact that when p = 1 the value of the voltage tensor

deviator is the same and its ratio to the magnetic pressure equals 0.4.

The inversion path as a function of 8, with a = 0.03, was determined for

slow magnetosonic waves. In accordance with (3.20), at large values B the

serpentine instability does not occur at

Ap /po = -3 was selected for the numerical calculations. The next difficulty is /14

caused by the fact that at 1/Z 0 1, over a sufficiently wide range of o values

we encounter an integral curve B (p) such as does not permit increase in p by a
y

factor of 1.3 (see Figure 2). In order to surmount this difficulty, it is

assumed that Z = 0.01. In this case the portions of the integral curves on

which B2 increase with increase in p are displaced far to the right along the p
y

axis.

In the numerical calculations ranged from 0.01 to 5. The results of the

calculations are presented in Figure 5.

It is to be seen from Figure 4 that when 1 0 0, .n 1/3, with B << 1,

i. is near 1/3 at any value 1. This is in close agreement with the resultsinv
of §3. Unfortunately, it is not possible to devise a logical physical explana-

tion for the behavior of the curves at 1/1 - 1. However, it must be remembered

that the CGL equations are valid only for motion perpendicular to the magnetic

field. In addition, cold plasma is described by equations which are equations

of discontinuity]and conservation of momentum. For this reason it is precisely

the limiting cases discussed in §3 which are of the greatest interest.

It is to be seen from Figure 5 that when B - , . - 0.185, and when
inv

S0, v. 0.833, this agreeing with the results of §4.
inv

§6. Effect of Wave Inversion on Solar Wind Heating

The following mechanism of solar wind heating is proposed in [4]. It is

assumed that there emerges from the base of the external corona an energy flux

of the order of 5 x 1026 erg/sec in the form of hydromagnetic waves. The lines

of f6rce of the magnetic field are considered to be in the form of spirals, in

10



keeping with the models discussed in [5]. In particular, it is assumed that

the magnetic field of the Sun is almost radial up to distances of the order of

10 R0 , Where R. is the radius of the Sun. It is believed that the spectrum of

the waves emerging from the base of the external corona is isotropic. As has

been demonstrated in [6], slow magnetosonic waves are damped at a distance of

the order of several wavelengths. It is also demonstrated here that the rapid /15

waves are also rather intensely damped, provided that they are not propagated

along or across the magnetic field. It is shown in [4] that the wave vector

tends to become radial when waves are propagated from the Sun through inter-

planetary plasma. Owing to these two processes (damping and the tendency of

waves toward radial propagation), approximately 1% of the wave energy remains at

a distance of the order of several solar radiuses, this energy being propagated)

__ in the form of radial waves. These waves subsequently enter a region in which- -

the magnetic field ceases to be radial and begins to damp, increasing the tempera-

ture of the ions along the magnetic field, as has been demonstrated in [7].

It is demonstrated below that the inversion path of the rapid magnetosonic

waves referred to in the foregoing is much shorter than the solar radius. Con-

sequently, without being inverted they cannot reach the regions in which the

magnetic field ceases to be radial and the waves are greatly damped. When a

wave is inverted its profile becomes steeper, this leading to the occurrence of

shortwave harmonics in expansion- of the wave into a Fourier series. A time

comes when the wavelengths of these harmonics become comparable to the Larmor

radius of the ions, and the conclusions drawn in [6] consequently do not apply

to them. It may be found, in particular, that they are greatly damped on being

propagated along the magnetic field. Hence it is necessary to allow for non-

linear effects in wave propagation in the theory advanced;in [4]. Let us deter-

mine the inversion path of rapid radially propagated magnetosonic waves at a

distance r - 10 R.. The following solar wind parameters at r = 10 R are given
4 -3 6in [4]: ion density N = 10 cm , temperature T - 10 6 K, magnetic induction

-2
B 10 gauss. In addition, it is pointed out in [4] that on change in r from-3
2 R to 10 Ro N decreases as r-3. It is then easy to obtain the following

approximate expression for N:

S A/=0 (RoI) (4.1) /16

11



Say that at distance r N changes by 1%. The following approximate formula

can be obtained for r
one

rone : .0033. ' (4.2).

In particular, when r - 10 Ri, r 2 2-10 km. The solar plasma may clearly be
O* one

considered to be homogeneous at a distance of the order of r
one

Let l1 be the mean free path of the electrons, and rZi the Larmor radius

of the ions. Employing the formulatfor a fully ionized Coulomb gas, we obtain J

Z Z -105 km. For the Larmor ion radius we have the value ri = 1 km. The CGL

equations are then applicable to waves length L of which satisfies the following

statement of inequality:

1 km «< L << 105 km. (4.3)

However, we are considering waves coming from the base of the external corona.

When r 2 R we have the following values of ll and r : L - 103 km, ir

r/i 100 m. Hence in the range from 2 R, to 10 R® the CGL equations are valid

for waves having a length

L o 10 100K K. (4.4)

When r 10 R. the temperature in the solar wind is isotropic and the

temperatures of the ions and electrons are equal. We obtain the following
-6 2 2values for the thermal and magnetic pressures: p z 3*10 dyn/cm , B /8 4-

-6 2 7 0
*10 dyn/cm . The speed of the solar wind u - 10 cm/sec = 100 km/sec. We

obtain the - following phase velocity for waves propagated along the magnetic field._

C "ii ___ _(4.5)

By means of primes we will designate small disturbances of the corresponding /17

values. For a rapid wave we obtain B' = 0, v' = 0 and thus E = 0. Since in

the CGL E = 0, we obtain E' = 0. Hence p', u', p; and pl undergo change in

a rapid wave propagated along the magnetic field. The mean energy of the wave

may be estimated as follows:

< , D.- -< U I > (4.6)

The symbol < > denotes averaging over space. Velocity and density disturbances

are related as follows in a rapid wave:

12



..= - _ • .... (4.7)

Say that all energy is propagated in the form of waves of length L and with a

ratio of amplitude of density disturbance to undisturbed density equalling a.

Then

1 wa - (4.8)

The waves transfer through a spherical surface of radius r energy equalling

.. . I 1 (4.9)

Substituting in (4.8) r = 10 R. and the values of a +, uo, and po corresponding

to the distance from the Sun, we obtain for W

=5 0 i erg/sec. (4.10)

But on the other hand, W = 5-1024 erg/sec (see [4]). Thus, a -- 0.1. It is

shown in the appendix that a simple wave propagated along the magnetic field is

inverted after traveling a path of the order of L/a. In our case the inversion

path will thus be of the order of 10 L. It follows from (4.4) that the inversion

will take place at a distance not exceeding 1,000 km, this being smaller than

r and even smaller than RP.
one ,. . .. .

It is to be noted that the conclusions drawn in this section are based on /18

application of the CGL equations to motion of a plasma along a field, and there

is little justification for this.

13



FIGURES

90 9, .

Figure 1. Illustrating Trace of In- Figure 2. Illustrating Trace of In- /21
tegral Curves for Rapid Simple Waves. tegral Curves for Slow Simple Waves.
A region of serpentine instability is A region of serpentine instability
situated to the right of curve 1. is situated to the right of curve 1.

Figure 3. Solid-Line Curve: /22

Graph of Functio4

for
S1 for '>I
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S=o, 04 ppo

0 .a, 4; a ./- 0 ,6j,-=4;

0 1; a p/p = 0,9.
S 0 ,57143 ; LA/pIp=-9/o- 0.

I I I

-0. 2 3 4 s

Figure 5. Illustrating Inversion /24

Path as a Function of Ratio of
SaI @Pressure Tensor Component Parallel

to Magnetic Field to Magnetic Pressure
for Slow Simple Waves Propagated
Virtually Athwart the Magnetic Field.
The broken line corresponds to I~ =

inv
= 0.185.

V 4 , j i 2-- .i -- ;°
3 5 7 g -i /e

Figure 4. Illustrating Inversion /23
Path as a Function of Direction
of Magnetic Field in an Undisturbed
Flux for Rapid Simple Waves. The
broken line corresponds to m. =

1nv

= 1/3.
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APPENDIX

Let us construct the 'precise soiution of equat-ons (2.21. We make use of
the fact that when Z = A = 0 when p > p*, A = 0 when p < p (see Figures 1

and 2)., in which p* is defined by equation (1.5) may be rewritten as follows
in dimensionless form:

___( - P,4i6Y . {. (1)

Let us consider two simple waves, one following closely behind the other

along the magnetic field (i.e., 12-1). In the first, slow, wave, p varies from

1 to p*, and in the second from p* to 1 + a.__ If 1 + a < p*, it suffices to

consider the first wave only. We ,determine the phase velocity relative to the

medium at rest, a, as follows:

- + > ?{ Y Fj.9 (2)

It can readily be seen that a solution such as this satisfies (2.2), since it

converts the righthand and lefthand members of the equation for 1/Z into

identical zeroes. In this wave the longitudinal velocity and the pressure

tensor components change with change in p. The transverse components of the

magnetic field and velocity remain equal to zero.

On the basis of (2) it is easy to obtain

d -(3)

from which is derived the formula for a dimensionless inversion path

nIl " (4)inv :9 &a I()
Taking f(E) in the form of (3.3), we obtain for the dimensionless inversion

path

Sinv =1/4 . (5)

When f( ) = 1 + a cos Tr /2, i. = 1/7Ta.
nv
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